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Abstract
We show that the Painlevé equations PIII–PVI can be derived in a unified
way from a periodic sequence of Darboux transformations for a Schrödinger
problem with quadratic eigenvalue dependence. The general problem naturally
divides into three different branches, each described by an infinite chain
of equations. The Painlevé equations are obtained by closing the chain
periodically at the lowest nontrivial level(s). The chains provide ‘symmetric
forms’ for the Painlevé equations, from which Hirota bilinear forms and Lax
pairs are derived. In this paper (part I) we analyse in detail the cases PIII–PV,
while PVI will be studied in part II.

PACS number: 02.30.Ik

1. Introduction

The aim of this paper is to provide a bridge between two extremely fruitful descriptions of
the Painlevé equations in the context of integrable systems: the (Darboux) dressing chain
approach of the Russian school [1–6] and the tau-function based approach of the Japanese
school [7–16].

In the seminal paper [3] Adler proposed a complete description of the Painlevé equations
PII–VI by means of the so-called Darboux chains. These generalize the usual dressing chain
[1] which, in its periodic case, was already known to provide a description of the PIV and PV

equations [2]. Adler succeeded in describing the Schlesinger–Bäcklund transformations and
notably the Weyl-group action of these transformations for the Painlevé equations, merely
by starting from the Darboux transformations that underlie their associated (periodic) chain
equations. However, its relationship with Okamoto’s theory of the Painlevé equations (in which
Weyl-groups play a central role) has still not been elaborated. In the Okamoto description, the
Weyl-group action of the Bäcklund transformations for the Painlevé equations is closely related
to the notion of a tau-function [7, 9–13] (see [17] for an overview), which in turn is connected
to the existence of isomonodromy problems associated with the Painlevé equations [8].
In recent years this (affine) Weyl-group structure of certain Bäcklund transformations for the
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Painlevé equations, together with the tau-function description of the Hamiltonians underlying
these equations (see [18] for a survey of results), has given rise to a ‘symmetry-based’ approach
to the Painlevé equations and related systems [14, 19]. In [14] Noumi and Yamada proposed a
systematic description of a class of dynamical systems comprising the PIV and PV equations,
which all possess Bäcklund transformations that make up an affine Weyl-group and which
allow for tau-function descriptions of their Hamiltonian structures. The so-called ‘symmetric
forms’ of these dynamical systems play a central role in this approach [16].

We will show, using the associated Hirota bilinear representations, that periodic closings
of the standard dressing chain considered in [2, 3, 6]—and from which PIV–V are obtained
at periods 3 and 4 respectively—correspond exactly to the dynamical systems introduced in
[14]. Our approach is, however, not restricted to the PIV–V equations or similar cases. We shall
also explicitly derive a symmetric form of the PIII equation and of a whole class of related
equations (which first appeared in [4]), which we then bilinearize (i.e. express in terms of
tau-functions). We believe that the bilinearization of these equations and of the PIII equation
in particular is new.

A major part of this paper is devoted to a systematization of the results obtained by
Adler [3] in order to derive all relevant Darboux (dressing) chains from a common starting
point and to analyse their properties using one and the same technique. This is in contrast
to what is presently available in the literature, where the nature of the Darboux chain (or the
techniques used in its construction) is adjusted to each Painlevé equation specifically. This
unified approach then not only pays off when bilinearizing the Darboux chains we obtain, but
also and especially so when deriving Lax representations of those chains. Although a lot of
attention has been devoted to the spectral properties of the linear equations whose Darboux
transformations underlie the various (Darboux) dressing chains associated with the Painlevé
equations [2, 6, 20], no Lax representations of these chains have been offered in the literature
pertaining to Darboux chains, although the Noumi–Yamada symmetry approach does yield
such representations. In the following we shall, systematically, derive Lax pairs for the various
Darboux chains presented throughout this paper. In the PIV–V case these Lax pairs will turn
out to be identical to those obtained in [16, 21], but we believe that the result concerning PIII

is new.
The structure of the paper is as follows: we start by defining the Darboux transformation

for a Schrödinger operator with an energy-dependent potential and derive its associated chain
equation. The analysis naturally divides into three branches covering PIV–PV, PIII and PVI,
respectively. In section 3 we study the PIV–PV branch in general and then in section 4 give the
details for PIV and in section 5 for PV. Then we study the PIII branch in general and in section 7
give the specific details for PIII itself. As mentioned above, the results concerning the PVI case
will be discussed in part 2.

While completing this paper we came across [4] by Shabat, which is also concerned with
systematizing the Darboux–Painlevé connection. It is therefore not surprising that our analysis
runs largely parallel with that paper and that many formulae are identical or similar. However,
as we wish to focus on the specific connections to the Painlevé equations, continuing with
their bilinearization and Lax pairs, our presentation is both more specific and more detailed.
We believe that in doing so the method and its internal machinery gain further clarity.

2. The Darboux transformation

Roughly speaking, a Darboux transformation is a transformation between two linear (ordinary
or partial) differential equations, of the same overall appearance but for different values of their
coefficients: the solutions of the first equation will be mapped to the solutions of the second,
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and the changes in the coefficients of the equation are also provided by the transformation (see,
e.g., [22] for a classic introduction in the context of integrable systems). We are interested in
chains of such transformations applied to the Schrödinger equation.

2.1. The general form of the chain equations

Consider the spectral problem associated with the Schrödinger operator [4]

Lj(u, λ)ψj (λ, x) = 0 where Lj(u, λ) := ∂2
x + uj (λ, x). (1)

Here j indexes the eigenproblem, and λ are the eigenvalues (assumed non-degenerate). Note
that we make no assumptions about boundedness or normalizability of the eigenfunctions. We
shall refer to the functions uj (λ, x) as ‘generalized potentials’ as they include dependence on
the eigenvalues λ. Next define the operator

Gj(λ, x) := Aj(λ, x)(∂x − Fj (λ, x)) (2)

and then using this define new functions

ψj+1(λ, x) := Gj(λ, x)ψj (λ, x) (3)

for each eigenfunction ψj(λ, x) of the original problem at level j . The new functions ψj+1

will then be eigenfunctions of a new operator Lj+1 (with the same, generic eigenvalue λ),
provided that Lj+1 satisfies the operator identity

Lj+1Gj(λ, x) = G̃j (λ, x)Lj (u, λ) (4)

for some G̃j (λ, x) := Aj(λ, x)(∂x − F̃ j (λ, x)). Assuming that Lj+1 is a differential operator
(i.e., polynomial in ∂x) one finds that

F̃ j (λ, x) = Fj (λ, x) − 2(log Aj(λ, x))′ (5)

Lj+1 = Lj(uj+1, λ) (6)

uj+1(λ, x) = uj (λ, x) + [2Fj (λ, x)Aj (λ, x) − Aj(λ, x)′]′/Aj (λ, x) (7)

Fj (λ, x)′ + Fj (λ, x)2 + uj (λ, x) = µj(λ)Aj (λ, x)−2 (8)

where µj is an integration constant (the ′-notation stands for d
dx

).

The transformation (3) from ψj to ψj+1 will be called a Darboux transformation iff
at each step j the operator Gj is such that it annihilates some chosen eigenfunction
ϕj of (1) having eigenvalue νj .

This necessarily implies that Fj (νj , x) = (log ϕj )x and therefore these Fj also satisfy the
equation

Fj (νj , x)′ + Fj (νj , x)2 + uj (νj , x) = 0. (9)

This should be compatible with (8) and therefore µj(νj ) = 0.
Now subtracting (8) for j and for j + 1 and using (7) to eliminate the potentials u we get

a chain of equations

Fj+1(λ, x)′ + (Fj (λ, x) − (log Aj(λ, x))′)′ + Fj+1(λ, x)2 − (Fj (λ, x) − (log Aj(λ, x))′)2

+ µj(λ)Aj (λ, x)−2 − µj+1(λ)Aj+1(λ, x)−2 = 0. (10)

In the following we shall think of this chain equation as a generator for λ-independent chain
equations (the dressing chains). Thus the main equations underlying our analysis will be (7),
which gives the change in u once F,A are given, and (10), the chain equation.
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2.2. Linear problem for the chain equations

The commutation relation (4) which generates the chain equation (10) can also be rewritten as

Lj+1Gj − GjLj = 2A′
jLj or A2

jLj+1Gj = GjA
2
jLj (11)

which allows one to interpret the system (1), (3) as a kind of linear problem for the chain
equation. Let us define

Mj := ∂x − A−1
j S − Fj where S : ψj(λ, x) �→ ψj+1(λ, x) (12)

then since

Mjψj(λ, x) = 0 (13)

(i.e., equation (3)) we can eliminate ∂x from the eigenvalue problem (1) and obtain the
following second-order difference equation for the eigenfunctions ψj(λ, x):

Ld
j ψj (λ, x) = 0 (14)

where

Ld
j := A−1

j SA−1
j S + A−1

j SFj + FjA
−1
j S − (log Aj)

′A−1
j S + µjA

−2
j (15)

(see also [4, 23, 24]). The compatibility condition of the system (13), (14), which is of course
a natural consequence of the compatibility of equations (1) and (3), takes the form

Aj

(
MjL

d
j − Ld

j Mj

)
+ 2A′

jL
d
j = 0 (16)

and is satisfied iff (10) holds. This linear problem will play an important role later on when
we derive explicit forms for the Lax pairs for various reductions of the dressing chains.

2.3. The specialization that contains PIII–PVI

The above is as far as we will go with the general setting. Now we specialize to the λ-
dependence [3]

uj (λ, x) = −λ2 + λvj (x) + wj(x) (17)

for the potential, and

Fj (λ, x) = λhj (x) + fj (x) (18)

for the Darboux transformation. We will now show that this simple case is still rich enough
to allow for three different infinite hierarchies of equations, containing Painlevé equations as
their simplest nontrivial members.

With the above assumptions we find from (5) and (8) that both (log Aj(λ, x))′ and
Aj(λ, x)−2 should be polynomials in λ. This is only possible if the λ-dependence in Aj(λ, x)

is multiplicative, in which case it can always be incorporated into the integration constants
µj(λ) in (8). Furthermore, comparing (8) and (9) shows that µj(λ) should contain an overall
factor of λ − νj and thus we can take it to have the form

µ(j, λ) = (λ − νj )(λαj + βj ). (19)

When the above ansätze are substituted into equation (8) we find, at successive powers of
λ, the following equations:

λ2 : Aj(x)−2αj = hj (x)2 − 1 (20)

λ : Aj(x)−2(βj − αjνj ) = hj (x)′ + 2fj (x)hj (x) + vj (x) (21)

1 : −Aj(x)−2βjνj = fj (x)′ + fj (x)2 + wj(x). (22)
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The solutions of this set of equations naturally split into three distinct branches:

1. If h2
j ≡ 1 then we can take (without loss of generality) hj = 1, αj = 0 and βj = 2,

and solve A−2
j = fj (x) + 1

2vj (x) from (21). The chain equations (10) obtained from this
branch will contain PIII as a special case.

2. If hj ≡ 0 we can take αj = −1, Aj (x) ≡ 1 and equation (21) then becomes
vj (x) = νj + βj . For convenience we set vj (x) ≡ 0 and βj = −νj , which implies that
µ(j, λ) = ν2

j − λ2 and uj (λ, x) = −λ2 + wj and we therefore obtain the usual dressing
chain for the Schrödinger equation [3, 6], after changing notation λ2 → λ, ν2

j → νj . This
branch contains PIV and PV.

3. Finally, in the generic case we choose αj = −1 so as to get Aj(x)−2 = 1 − hj (x)2.
Equations (21) and (22) then yield ODEs for h and f . In part II, this branch will be shown
to contain PVI.

Note also that the PIV, PV branch is obtained as a limit h → 0 from the PVI branch. The PIII

branch can also be obtained as a limit from the PVI branch, but the limit is singular: let

hj = 1 − ε
(
fj + 1

2vj

)
αj = −2ε (23)

and then as ε → 0 the leading terms from equations (20), (21) yield A−2
j = fj + 1

2vj and
βj = 2, respectively.

In all these branches the Painlevé equations are obtained when the derived chain equations
are closed (with ‘more or less’ periodic boundary conditions as we shall see later on) after
two, three or four steps. Each time there exists a ‘hierarchy’ of equations, obtained by closing
the chain after a higher number of steps, but we will not discuss these higher order equations
in the present paper.

3. The PIV–V branch in general

3.1. The generic chain equations

The simplest realization of the above scheme is found in the case of the (ordinary) Schrödinger
equation

(
∂2
x + w(x)−λ

)
ψ(λ, x) = 0, i.e., for a generalized potential uj (λ, x) in the operator

(1) of the type

uj (λ, x) = wj(x) − λ. (24)

In this case it is well known that the usual Darboux scheme works [22] and that the Fj are
actually λ-independent functions Fj (λ, x) = fj (x). More precisely, as explained above, we
must choose particular eigenfunctions ϕj (νj ) of the Schrödinger operator ∂2

x + wj(x) (with
eigenvalues νj ) such that the fj (x) are expressed as

fj (x) := (log ϕj )x (25)

hence these latter functions have to satisfy the following specialization of relation (9)

fj (x)′ + fj (x)2 + wj(x) − νj = 0. (26)

Simultaneously we have to satisfy equation (8) and therefore we choose without loss of
generality,

µj(λ) = (νj − λ) Aj (x) = 1. (27)

This then yields the standard Darboux transformation for the Schrödinger operator with
f̃j ≡ fj (from (5)), Gj(x) ≡ ∂x − fj (x) (from (2)) and with a change in the potentials (7)
given by

wj+1 = wj + 2f ′
j ≡ wj + 2(log ϕj )2x. (28)
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The resulting chain equation (10) for such Darboux transformations is the well-known
dressing chain [1]

f ′
j + f ′

j+1 = f 2
j − f 2

j+1 + αj αj = νj+1 − νj . (29)

The linear problem for the dressing chain [23] follows from the general expressions (12),
(13) and (15), (14), subject to (27):

[∂x − S − fj ]ψj = 0 (30)

[S2 + fjS + Sfj + νj − λ]ψj = 0. (31)

From equation (16) it can be seen that the compatibility condition of this linear system takes
the form of a straightforward operator commutation relation

[
Mj,L

d
j

] = 0.

3.2. Generic bilinearization

Note that the initial potential, say w0, in the sequence (28) never appears in the dressing
chains. In fact, it only becomes relevant when actually (re-)interpreting the solutions of these
chains—through (25)—as solutions of Schrödinger equations such as (26), which explicitly
depend on specific potentials. One instance where the underlying Schrödinger equations are
of importance is when one wishes to obtain a Hirota bilinear form for the dressing chain. For,
if in the sequence of coupled Schrödinger equations(

∂2
x + wj

)
ϕj = νjϕj (j = 1, 2, 3) (32)

with potentials transforming as in (28), we parametrize each potential wj as

wj = 2(log ωj−1)2x

then we obtain a multiplicative transformation rule for the new functions ωj ,

ωj = ωj−1ϕj .

This suggests a parametrization of the eigenfunctions ϕj (32) as the ratio of ωj and ωj−1. As
is well known, the standard bilinearization of such Schrödinger equations is through a ratio of
τ -functions. Here, with the benefit of (considerable) hindsight we set

ϕj = τj

τj−1
e−ε̂x2/4 ωj = τj e−ε̂2x4/96 e−(j−1/2)ε̂x2/4 νj = ε̂(1 − j) + κj−1 (33)

and then (32) transforms into(
D2

x − ε̂xDx − κj−1
)
τj · τj−1 = 0 (34)

for some constants ε̂ and κj . (For a definition of the Hirota D-operators and an introduction
to their importance in the context of the Painlevé equations we refer to the review paper [25].)

It can be shown that this chain of bilinear equations is nothing but a similarity reduction
of the (2 + 1)-dimensional dressing chain associated with the modified KP hierarchy. This
entitles us to refer to these τj as genuine tau-functions in the sense of Sato theory [26–28]; the
specific description of this reduction will be addressed in a separate publication [30]. Note
that, as pointed out above, the initial tau-function τ0 (and hence the potential w0) appears
explicitly in the bilinear chain (34).

Below we will see that the system (34) provides a generic bilinearization for all Painlevé
equations (and higher order variants) contained in the dressing chain. There do exist other
possibilities when it comes to bilinearizing the Painlevé equations, see [25, 29, 30], but we
believe the present generic approach to be new. (For a general survey of the Painlevé equations
as similarity or symmetry reductions of integrable nonlinear partial differential equations, see,
e.g., [31].)
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3.3. Periodic closing of the dressing chain

As was mentioned in the introduction we are interested in dressing chains of finite length.
Specifically, we will impose periodic closing conditions on the sequences of Darboux
transformations used in the construction of the chains, i.e., following Adler [6], we require
that—up to a shift in the eigenvalues νj —the eigenfunctions ϕj (νj ) which define the Darboux
transformations (as in (25)) become periodic with some period N � 1:

ϕj+N(νj+N) = ϕj (νj ) with νj+N = νj − ε (35)

for a shift ε �= 0.
As these functions satisfy

(
∂2
x + wj

)
ϕj = νjϕj , we immediately find that the periodic

closing of the sequence of functions ϕj also implies that the sequence of potentials wj

(generated through these very Darboux transformations) has to close as

wj+N(x) ≡ wj(x) − ε (36)

with the obvious implication that the sequence of generalized potentials uj (λ, x) (24) closes
as

uj+N(λ, x) ≡ uj (λ + ε, x) (37)

for generic eigenvalues λ.
The closing conditions (35) take on a particularly simple form when expressed on the

bilinear chain (34):

τj+N = τj κj+N = κj and ε̂ = ε

N
. (38)

It should be remarked that as a consequence one also obtains the constraint
N∏

j=1

ϕj = e−εx2/4 (39)

from (33). Finally, for the variables (and parameters) which appear in the dressing chains
(29), the periodicity conditions take the form

fj+N = fj αj+N = αj

N∑
j=1

αj = −ε (40)

accompanied by the first integral (which holds for all N > 0)
N∑

j=1

fj = −εx

2
. (41)

If N is even there is another integral, obtained by summing every other term of (29):
N∑

j=1

(−1)jf 2
j = −1

2

N∑
j=1

(−1)jαj . (42)

Note that the cases N = 1, 2 are therefore solvable by quadratures.

4. PIV

As was discovered almost a decade ago [2, 3], the 3-periodic dressing chain (29) is nothing
but the PIV equation. We shall now go on to show this explicitly on the dressing chain, after
which we shall derive a bilinear representation and a Lax pair for the PIV equation.
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4.1. The symmetric form of PIV

Using condition (40) at N = 3 we obtain from (29) the chain of equations
f ′

1 + f ′
2 = f 2

1 − f 2
2 + α1

f ′
2 + f ′

3 = f 2
2 − f 2

3 + α2

f ′
3 + f ′

1 = f 2
3 − f 2

1 + α3

(43)

with

α1 + α2 + α3 = −ε. (44)

Expressed in terms of

g1 = f1 + f2 = (log ϕ1ϕ2)x

g2 = f2 + f3 = (log ϕ2ϕ3)x

g3 = f3 + f1 = (log ϕ3ϕ1)x

(45)

we get 
g′

1 = g1(g3 − g2) + α1

g′
2 = g2(g1 − g3) + α2

g′
3 = g3(g2 − g1) + α3.

(46)

Following Noumi and Yamada [15, 16] we shall refer to this system as the symmetric form
of the PIV equation. This particular form of the period 3 dressing chain appears already in
[3]. However, it is worth pointing out that (46) is already presented in [32] where it is used to
integrate a higher order nonlinear differential equation in terms of the PIV equation.

Because of the constraint (44)—or alternatively, as a consequence of (41)—the system
(46) can be integrated once:

g1 + g2 + g3 = −εx (47)

(where a possible integration constant only amounts to a translation in x and can therefore be
omitted). Eliminating g3 we get{

g′
1 = α1 − 2g1g2 − εxg1 − g2

1

g′
2 = α2 + 2g1g2 + εxg2 + g2

2 .
(48)

These equations are in Hamiltonian form

g′
1 = ∂H

∂g2
g′

2 = −∂H

∂g1
(49)

where

H = −g1g
2
2 − g2g

2
1 − εxg1g2 − α2g1 + α1g2. (50)

Note that this Hamiltonian form of PIV differs slightly (by a simple canonical transformation)
from the one discussed by Okamoto [7, 9, 18]; it does, however, appear in this form in the
classic work [33], and in [15].

Finally, the PIV equation in its standard form is obtained from (48) if we eliminate g2 and
denote y(z) = κg1(x), where x = κz, κ2 = 2/ε:

d2y

dz2
= 1

2y

(
dy

dz

)2

+
3

2
y3 + 4zy2 + 2(z2 − a)y +

b

y
(51)

where the parameters a and b are given by

a = (α2 − α3)/ε b = −2(α1/ε)
2. (52)
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4.2. Bilinear form of PIV

Imposing conditions (38) on the bilinear form (34) at N = 3 we immediately obtain a
bilinearization of the PIV equation:

(
D2

x − εx
3 Dx − κ0

)
τ1 · τ0 = 0(

D2
x − εx

3 Dx − κ1
)
τ2 · τ1 = 0(

D2
x − εx

3 Dx − κ2
)
τ0 · τ2 = 0.

(53)

The transformation for the gi is

gi = ∂x log
τi+1

τi−1
− εx

3
αi ≡ κi − κi−1 − ε

3
(54)

for i = 1, 2, 3, and with periodicity (38) (see also [15, 16]). Recall that (53) was obtained by
making the substitution (33) directly into the (now periodic) chain of Schrödinger equations
(32). If, on the other hand, we make the substitutions (54) into the symmetric form (46) we
will only obtain two equations for the three tau-functions. This is because the equations (46)
do not contain any information on the potentials w. However, if we explicitly include the
assumption wj = 2(log τj−1)2x , e.g., in the form of the first equation of (53), then we do
obtain a well-determined system of bilinear equations. Note also that

y(z) = ∂z log

(
τ2

τ0
e− z2

3

)
. (55)

4.3. Lax pair for PIV

Let us see what the consequences of the periodic closing (35) are on the linear problem (30),
(31). According to (37) the generalized potentials uj (λ, x) are periodic for generic λ as well
(up to a shift in λ) and thus we may require similar periodicity for some eigenfunctions of the
linear problem (1), namely those generated by successive Darboux transformations:

ψj+3(λ, x) = ψj(λ + ε, x). (56)

The linear system (30), (31) therefore reduces to the following set of ‘difference equations’ in
the spectral parameter λ:

∂x

ψ1

ψ2

ψ3

 =
ψ2 + f1ψ1

ψ3 + f2ψ2

ψs
1 + f3ψ3

 ψ3 + g1ψ2 + ν1ψ1

ψs
1 + g2ψ3 + ν2ψ2

ψs
2 + g3ψ

s
1 + ν3ψ3

 = λ

ψ1

ψ2

ψ3

 (57)

where the symbol ψs
j denotes eigenfunctions at shifted values of the spectral parameter:

ψs
j (λ, x) := ψj(λ + ε, x).

In order to recover a more customary linear problem for the PIV equation, let us first
rewrite the equations (57) as

∂x(λ) = B1(λ) + B2(λ + ε) (58)

(A1 − λI)(λ) + A2(λ + ε) = 0 (59)

for (λ) = (ψ1(λ, x), ψ2(λ, x), ψ3(λ, x))t and with matrices B1,B2,A1 and A2

B1 =
f1 1 0

0 f2 1
0 0 f3

 B2 =
0 0 0

0 0 0
1 0 0


(60)

A1 =
ν1 g1 1

0 ν2 g2

0 0 ν3

 A2 =
 0 0 0

1 0 0
g3 1 0

 .
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If we now define the (formal) Fourier transform of (λ) as

�̃(k) ≡
∫

dλ eikλ(λ) (61)

we immediately see that �̃(k) satisfies local relations in k, for example,

∂x�̃(k) = B1�̃(k) + B2 e−iεk�̃(k) (62)

instead of the original difference relation (58) in λ. Consequently, introducing a new parameter
ξ and a new function �(ξ) in terms of �̃(k) by

ξ := e−iεk �(ξ) := �̃(k)|k= i
ε

log ξ (63)

we find that �(ξ) satisfies the following Lax pair for the PIV equation,{
∂x� = M� M ≡ B1 + ξB2

−εξ∂ξ� = L� L = A1 + ξA2
(64)

and the compatibility condition ∂xL + εξ∂ξM = [M,L]− is nothing but the symmetric form
(46) for PIV. This Lax pair already appears in [16], in connection with reductions of the
Drinfeld–Sokolov hierarchy. Also, the transformations (61) and (63) combined, amount to
the Mellin transformation that is used (to the same effect) in [21] in order to connect Lax pairs
arising in the context of dressing chains to those that appear in the work by Noumi et al.

5. PV

Similar to the above, PV can be obtained by closing the dressing chain (29) at N = 4 [2, 3].
Just as for the PIV equation this insight yields immediate access to a Lax pair and bilinear
formulation for the PV equation.

5.1. Periodic closing and PV

Closing the Darboux chain (29) at period N = 4 (cf condition (40)) yields the following
system of differential equations:

f ′
1 + f ′

2 = f 2
1 − f 2

2 + α1

f ′
2 + f ′

3 = f 2
2 − f 2

3 + α2

f ′
3 + f ′

4 = f 2
3 − f 2

4 + α3

f ′
4 + f ′

1 = f 2
4 − f 2

1 + α4

(65)

with constants αj (j = 1, 2, 3, 4) subject to the constraint

α1 + α2 + α3 + α4 = −ε. (66)

Now we have two first integrals

f1 + f2 + f3 + f4 = − 1
2εx (67)

−f 2
1 + f 2

2 − f 2
3 + f 2

4 = 1
2 (α1 − α2 + α3 − α4) =: ω (68)

(recall (41), (42)). Hence, the system (65) can be reduced to a second-order differential
equation, which turns out to be nothing other than the Painlevé V equation. We shall now
proceed to show this.
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It is convenient to rewrite the symmetric form (65) in terms of new variables g1, g2

obtained by resolving (67) and (68) as

f1 = − 1

2εx
g1g2 +

1

4
(g1 − g2) − εx

8
+

ω

εx

f2 = 1

2εx
g1g2 +

1

4
(g1 + g2) − εx

8
− ω

εx

f3 = − 1

2εx
g1g2 − 1

4
(g1 − g2) − εx

8
+

ω

εx

f4 = 1

2εx
g1g2 − 1

4
(g1 + g2) − εx

8
− ω

εx

the inverse relation of which is

g1 = f1 + f2 − f3 − f4 g2 = −f1 + f2 + f3 − f4

together with the constraints (67) and (68). In terms of these new free functions g1 and g2 we
obtain the symmetric form

g′
1 = − 1

εx
g2

1g2 +
2ω

εx
g1 +

εx

4
g2 + α1 − α3 (69)

g′
2 = 1

εx
g1g

2
2 − 2ω

εx
g2 − εx

4
g1 + α2 − α4 (70)

which is Hamiltonian (49) with

H := − 1

2εx
g2

1g
2
2 +

εx

8

(
g2

1 + g2
2

)
+

2ω

εx
g1g2 − (α2 − α4)g1 + (α1 − α3)g2. (71)

Note that this Hamiltonian form of PV differs from the form used in [7, 12, 18, 33], but they
are connected by a canonical transformation and a change of the independent variable.

The PV equation is now obtained if we first solve g2 from (69), substitute it into (70) and
express g1 in terms of y defined by

y = 1

2
− 1

εx
g1 where y = y(z) z = εx2/4

this yields the PV equation in the form (used, e.g., in [25, 29], up to an extra transformation of
the independent variable)

d2y

dz2
=

(
1

2y
+

1

2(y − 1)

) (
dy

dz

)2

− 1

z

dy

dz
− αy

z2(y − 1)

− β(y − 1)

z2y
− γy(y − 1)

z
− δy(y − 1)(2y − 1) (72)

where

α =
(
α1 − α3 − ω + 1

2ε
)2

8ε2
β = −

(
α1 − α3 + ω − 1

2ε
)2

8ε2

γ = α4 − α2

ε
δ = −1

2
.

The usual form of PV is obtained for w = y/(y − 1), which permutes the poles at 1 and ∞.
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5.2. Bilinear form of PV

Imposing conditions (38) on the bilinear form (34) of the dressing chain, this time at N = 4,
we obtain a bilinearization of the PV equation in terms of four tau-functions:

(
D2

x − εx
4 Dx − κ0

)
τ1 · τ0 = 0(

D2
x − εx

4 Dx − κ1
)
τ2 · τ1 = 0(

D2
x − εx

4 Dx − κ2
)
τ3 · τ2 = 0(

D2
x − εx

4 Dx − κ3
)
τ0 · τ3 = 0.

(73)

Subject to the same remarks as in the case of the PIV equation, this system of Hirota equations
gives a bilinear representation for the symmetric form (65) using substitution

fi = ∂x

(
log

τi

τi−1

)
− εx

8
αi ≡ κi − κi−1 − ε

4
(74)

for i = 1, 2, 3, 4, and with periodicity (38). Note also that (cf (55))

y(z) = ∂z log

(
τ0

τ2
e

z
2

)
. (75)

It was already mentioned that in [14] Noumi and Yamada presented a class of dynamical
systems, each member of which possesses a particular symmetry group of (affine) Weyl-type
Ŵ

(
A

(1)
n−1

)
. PIV and PV are contained in this class at levels n = 3 and 4, respectively. It

can be shown [30, 34], not only that the bilinear forms of the PIV and PV equations (53)
and (73) possess similar symmetries, but generally that any bilinear system contained in
(34) possesses a symmetry group of type Ŵ (A

(1)
n−1). Hence these equations are nothing but

the bilinear formulations of the Noumi–Yamada systems and consequently, we have shown
that each member in that class corresponds to a periodic dressing chain (in the sense of
sections 3.2 and 3.3).

5.3. Lax pair for PV

Exactly as in the PIV case one can obtain a Lax pair for PV by imposing periodicity on the
generic Lax pair (30), (31) for the dressing chain:

ψj+4(λ, x) = ψj(λ + ε, x). (76)

Following the notation of section 4.3 we can write

∂x


ψ1

ψ2

ψ3

ψ4

 =


ψ2 + f1ψ1

ψ3 + f2ψ2

ψ4 + f3ψ3

ψs
1 + f4ψ4




ψ3 + (f1 + f2)ψ2 + ν1ψ1

ψ4 + (f2 + f3)ψ3 + ν2ψ2

ψs
1 + (f3 + f4)ψ4 + ν3ψ3

ψs
2 + (f4 + f1)ψ

s
1 + ν4ψ4

 = λ


ψ1

ψ2

ψ3

ψ4

 . (77)

After a (formal) Fourier transformation similar to that in the PIV case (61), (63), we obtain the
following Lax formulation for the PV equation [16]:

∂x� = M� −εξ∂ξ� = L� (78)

M =


f1 1 0 0
0 f2 1 0
0 0 f3 1
0 0 0 f4

 + ξ


0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

 (79)
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L =


ν1 f1 + f2 1 0
0 ν2 f2 + f3 1
0 0 ν3 f3 + f4

0 0 0 ν4

 + ξ


0 0 0 0
0 0 0 0
1 0 0 0

f1 + f4 1 0 0

 . (80)

The compatibility condition ∂xL + εξ∂ξM = [M,L]− is easily seen to correspond to the
symmetric form (65) of the PV equation.

6. The PIII branch in general

As was noted in the introduction, the PIII branch is quite different from that for the PIV–PV

equations. In this section we will first study this branch in general and in the next section we
shall close the chain in order to obtain PIII.

6.1. The generic chain equations

As was explained in section 2.3, a different branch of the chain equation (10) for potentials of
type (17) is obtained if we choose

Fj (λ, x) := λ + fj (x) (81)

µj(λ) := 2(λ − νj ) (82)

Aj(x) := [
fj (x) + 1

2vj (x)
]− 1

2 (83)(
fj + 1

2vj �≡ 0
)
; the only remaining part of condition (8) is the following constraint on f (22):

f ′
j + f 2

j + νj (2fj + vj ) + wj = 0. (84)

For the present transformation to be a genuine Darboux transformation, we must also require
that the intertwiner Gj in (2) annihilates some particular eigenfunction ϕj := ψ(νj , x) of the
original Schrödinger equation, i.e., Fj (νj , x) = (log ϕj )x or in terms of f :

fj := −νj + ϕ′
j /ϕj . (85)

Condition (84) then turns into the Schrödinger equation for the eigenfunction ϕj :

ϕ′′
j +

(−ν2
j + νjvj + wj

)
ϕj = 0. (86)

The transformation induced for the potentials is obtained from (7):

vj+1 = vj + 2(log Aj)
′ (87)

wj+1 = wj + [2fjAj − A′
j ]′/Aj . (88)

From the explicit form (83) of A it is clear that in the present case the chain equations
generated by (10)—subject to condition (84)—will take the form of a dynamical system in the
variables f and v. However, these variables are strongly coupled and from (84), (87), (88) we
get (after eliminating w)

f ′
j + 1

2v′
j +

(
fj + 1

2vj

)
(vj+1 − vj ) = 0 (89)

f ′
j − 1

2v′
j − (fj−1 + νj−1)

2 +
(

1
2vj−1 − νj−1

)2
+ (fj + νj )

2 − (
1
2vj − νj

)2 = 0. (90)

It is convenient to change to new dependent variables dj , rj defined by

fj = 1
2dj + 1

2 rj − νj vj = dj − rj + 2νj βj = νj − νj+1 (91)
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(note that dj = fj + 1
2vj ≡ A−2

j ) because then the chain equations of the PIII branch take the
following simple form (which already appears in [4])

dj
′ = dj (dj − rj − dj+1 + rj+1 + 2βj ) (92)

rj
′ = dj−1rj−1 − dj rj . (93)

The linear problem for this integrable system is of course obtained from (12), (13) and
(15), (14) by appropriate identifications of the variables appearing in those equations, but we
shall not discuss its general form here.

6.2. Generic bilinearization

It is of interest to bilinearize the chain equations (92), (93) before closing the chain. We start
by representing A in terms of a new function ϕ̃j and the eigenfunction ϕj :

A−2
j = ϕ̃j

ϕj

(94)

which due to (85) amounts to

ϕ′
j = ϕ̃j +

(
νj − 1

2vj

)
ϕj . (95)

Since ϕj is a solution of (86) we also obtain

ϕ̃′
j = (

1
2vj − νj

)
ϕ̃j +

(
1
2v′

j − wj − 1
4v2

j

)
ϕj . (96)

Taken together, equations (95), (96) yield a first-order representation of the Schrödinger
equation (86) and as such provide a suitable starting point for the bilinearization of the
Schrödinger equations associated with the PIII branch.

Under the above ansatz, the transformation formula (87) suggests a logarithmic
parametrization for the potential v

vj := (log qj )
′ (97)

because then the transformation for q takes the simple multiplicative form

qj+1 ∼ qjϕj/ϕ̃j (98)

where ∼ denotes equivalence up to a constant multiple. The transformation formula for w is
best expressed in terms of a new variable W

wj = 1
2Wj − 1

4v2
j (99)

because then we get

Wj+1 = Wj + (log ϕj )
′′ − (log qj )

′′ + (log ϕ̃j )
′′ (100)

(from (88) using also (95), (98)) which suggests a parametrization

Wj := (log ωj)
′′. (101)

The transformation for W then takes the simple multiplicative form

ωj+1 ≈ ωjϕj ϕ̃j

qj

∼ ωjϕ
2
j

qj+1
(102)

(where ≈ denotes equivalence up to a gauge factor eax+b).
If, as before, we think of the functions ϕj , ϕ̃j , qj and ωj as ratios of ‘tau-functions’, it

becomes clear that
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qj = τ +
j

/
τj eγj x ωj = τj τ

+
j (103)

ϕj = cj

τ +
j+1

τ +
j

√
τ +
j

τj

eαj x ϕ̃j = c̃j

τj+1

τj

√
τ +
j

τj

eα̃j x (104)

is a good representation, since it automatically satisfies the multiplicative transformation rules
for v and w, equations (98) and (102), if the introduced constants satisfy

γj+1 = γj + αj − α̃j . (105)

For f and v we get from (81) and (97)

fj = 1

2
∂x log

(
τ +
j+1

2

τj τ
+
j

)
+ αj − νj vj = ∂x log

(
τ +
j

τj

)
+ γj . (106)

and then

dj = ∂x log

(
τ +
j+1

τj

)
+ αj +

1

2
γj − νj rj = ∂x log

(
τ +
j+1

τ +
j

)
+ αj − 1

2
γj + νj . (107)

As mentioned before, the assignments (103), (104) take care of equations (87), (88), but
we still have to study the Schrödinger equation (86), which we take in its first-order form (95),
(96). This yields{(

Dx + αj − νj + γj

2

)
τ +
j+1 · τj = c̃j

cj
e(α̃j −αj )xτ +

j τj+1

Dx

(
Dx + αj − νj + γj

2

)
τ +
j+1 · τj = c̃j

cj
e(α̃j −αj )x(Dx + γj − αj − α̃j − 2νj )τ

+
j · τj+1.

In (103), (104) we have some additional freedom in the parameters γ, α, α̃ (by scaling
τ +
j → τ +

j esj x, τj → τj e−sj x), which can be used to assign a fixed value to the parameter γj

γj = 2(νj − αj ). (108)

In order to satisfy (105) we must then also require that

α̃j = 2αj+1 − αj − 2(νj+1 − νj ). (109)

After this redefinition of parameters, the equations simplify considerably and we get{
Dxτ

+
j+1 · τj = κj eσj xτ +

j τj+1

D2
xτ

+
j+1 · τj = κj eσj x(Dx − ρj )τ

+
j · τj+1.

(110)

where

σj = α̃j − αj = 2(αj+1 − αj − νj+1 + νj )

ρj = α̃j + 3αj = 2(αj+1 + αj − νj+1 + νj )

κj = c̃j /cj .

Equations (110) form the Hirota bilinear representation of the chain equations (92), (93). For
later use note that due to the first equation of (110) we can also write

dj = κj eσj x
τ +
j τj+1

τ +
j+1τj

. (111)
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6.3. Periodic closing in general

As before, we are mainly interested in a finite chain of equations obtained after requiring the
potential uj (λ) to be periodic, up to a shift in the (generic) eigenvalue, as stated in (37), and
this implies the existence of ‘periodic’ eigenfunctions (35). For the potentials v,w this now
implies

vj+N = vj − 2ε wj+N = wj + εvj − ε2 (112)

whereas the auxiliary potential W of (99) is strictly periodic: Wj+N = Wj .
On the level of the τ -functions τ, τ + these closing conditions translate into strict periodicity

τ +
j+N = τ +

j τj+N = τj . (113)

Condition (105) was replaced by constraints (108) and (109), which are compatible with the
requirement that the parameters αj , α̃j , cj , c̃j , σj , ρj , κj are strictly periodic and

γj+N = γj − 2ε. (114)

We also have
N∑

j=1

βj = ε

N∑
j=1

σj = 2ε. (115)

Furthermore, from (107), (108) it is obvious that dj and rj are (strictly) periodic as well
and from (111) and (107) we also find the following two (generic) conservation laws for the
periodic chain equations [4]:

N∏
j=1

dj = e2εx

N∏
j=1

κj

N∑
j=1

rj = 2
N∑

j=1

αj . (116)

7. PIIIPIIIPIII

7.1. Closing the chain at N = 2

Due to the existence of two conservation laws the system obtained from (92), (93) at N = 1 is
of course trivial. However, at N = 2 we find that d1, d2, r1, r2 satisfy the four basic equations

d ′
1 = d1(d1 − d2 + r2 − r1 + 2β1) (117)

d ′
2 = d2(d2 − d1 + r1 − r2 + 2β2) (118)

r ′
1 = d2r2 − d1r1 (119)

r ′
2 = d1r1 − d2r2 (120)

with β1 + β2 = ε. We shall refer to this system as the ‘symmetric form of PIII’. We now show
how PIII is obtained from it.

Two first integrals were given in (116)

d1d2 = κ1κ2 e2εx r1 + r2 = 1
2 (ρ1 + ρ2) − ε. (121)

We resolve these by introducing new functions gi defined as follows:

d1 = κ1g1 eεx d2 = κ2g
−1
1 eεx

(122)
r1 = −g1g2 + 1

2 (ρ1 + ρ2) − ε r2 = g1g2.
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Then the equations (117)–(120) take the form

g′
1 = 2g2

1g2 + eεxκ1g
2
1 − (ρ2 − ε)g1 − eεxκ2 (123)

g′
2 = −2g1g

2
2 − 2 eεxκ1g1g2 + (ρ2 − ε)g2 + eεxκ1

(
1
2 (ρ1 + ρ2) − ε

)
(124)

which is Hamiltonian with

H = g2
1g

2
2 + eεxκ1g

2
1g2 − (ρ2 − ε)g1g2 − eεx

[
κ1

(
1
2 (ρ1 + ρ2) − ε

)
g1 + κ2g2

]
. (125)

This Hamiltonian form of PIII is the same as that given in [7, 13, 18], up to a simple
transformation.

If we solve g2 from (123), substitute it into (124), and use the new variables

y(z) =
√

κ1

κ2
g1(x) where z =

√
κ1κ2

ε
eεx (126)

we get PIII in the canonical form:

d2y

dz2
= 1

y

(
dy

dz

)2

− 1

z

dy

dz
+ y3 +

1

z

(ρ1

ε
y2 − ρ2

ε

)
− 1

y
. (127)

7.2. Bilinear form of PIII

The bilinear form of PIII is basically nothing other than (110) with periodic τ . Since the τ

appear in pairs (τ1, τ
+
2 and τ2, τ

+
1 ) and since bilinear equations are gauge invariant, we propose

the following gauge transformation and scaling

τ1 = √
κ1τ̄1 eθx τ +

2 = τ̄ +
2 eθx τ +

1 = τ̄ +
1

(128)
τ2 = √

κ2τ̄2 θ = 1
4 (σ1 − σ2)

which yield, after a subsequent x-translation x → x − 1
2ε

log(κ1κ2), the following novel
bilinear form of PIII:

Dxτ̄
+
2 · τ̄1 = eεx τ̄ +

1 τ̄2 (129)

Dxτ̄
+
1 · τ̄2 = eεx τ̄ +

2 τ̄1 (130)

D2
x τ̄

+
2 · τ̄1 = eεx(Dx − ρ1)τ̄

+
1 · τ̄2 (131)

D2
x τ̄

+
1 · τ̄2 = eεx(Dx − ρ2)τ̄

+
2 · τ̄1. (132)

From this PIII can also be derived directly: comparing (111), (122), (126) (after the
aforementioned gauge transformation) one can solve for τ̄2 in terms of y and the other τ̄ .
Then from (129) one solves for ∂xτ̄1 and from (130) for ∂xτ̄

+
2 . Then (131)×y−(132) is

nothing but the PIII equation (127). In these new variables y and z we also have (cf (55), (75))

y(z) = ∂z log
τ̄ +

2

τ̄1
. (133)

It should be noted that bilinear forms are sensitive to changes in the independent variable.
For example, if we express the bilinear system obtained after the transformation (128) (but
without the x-translation), in terms of the z-coordinate (now regarding the tau-functions
τ̄ +

2 , τ1, τ̄
+
1 , τ2 as functions of z) we get a system of equations which is no longer expressible

in Hirota D-operators only as it also involves ordinary z-derivatives. However, the system so
obtained can be shown to be a reduction of an integrable system contained in the so-called
‘modified 2-component KP hierarchy’ (at least in the restricted case where ρ2 = ±ρ1) and
hence the functions τ̄ +

2 , τ1, τ̄
+
1 , τ2 introduced here can be thought of as genuine tau-functions

in the sense of Sato theory.
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7.3. Lax pair for PIII

Just as for PIV, a Lax pair for the Painlevé III equation can be derived from the linear
formulation (13), (14) introduced earlier for the general chain equations (10).

As before, the standard periodic closing (35) involves a shift in the eigenvalues νj

associated with the eigenfunctions ϕj (for the PIII case one has ν3 = ν1 − ε). Hence, from the
condition ϕ3(ν3) = ϕ1(ν1) and expression (85) it follows that f3 = f1 +ε. Furthermore, due to
the relation u3(λ) = u1(λ + ε) there will exist eigenfunctions of the Schrödinger equation (1)
for which ψ3(λ, x) = ψ1(λ + ε, x) holds. This then, bearing in mind relation (81) and the fact
that A3 = A1 (actually A2

3 = A2
1; we choose the sign A3 = A1), yields the following periodic

closing of the linear equations (13)

∂xψ1 = A−1
1 ψ2 + (λ + f1)ψ1 (134)

∂xψ2 = A−1
2 ψs

1 + (λ + f2)ψ2 (135)

and (14)

(A1A2)
−1ψs

1 + A−1
1 (2λ + f1 + f2 − (log A1)

′)ψ2 + 2(λ − ν1)A
−2
1 ψ1 = 0 (136)

(A1A2)
−1ψs

2 + A−1
2 (2λ + ε + f1 + f2 − (log A2)

′)ψs
1 + 2(λ − ν2)A

−2
2 ψ2 = 0 (137)

where ψs
i stands for ψi(λ + ε, x).

It is now advantageous to change to scaled eigenfunctions

ψ̂i := A
−1/2
i e(−ε−2(ν1+ν2)+r1+r2)x/4ψi

(recall that r1 + r2 is a constant). After also changing to the new independent variable
z = εz = √

κ1κ2 eεx and using the previously obtained formulae we can write (134)–(137) as

εz∂zψ̂1 = 1
4 (4λ + d1 + d2 + ε − 4ν1 + 4ν2 + 2r1 − 2r2)ψ̂1 +

√
zψ̂2 (138)

εz∂zψ̂2 = 1
4 (4λ + d1 + d2 − ε + 4ν1 − 4ν2 − 2r1 + 2r2)ψ̂2 +

√
zψ̂1 (139)

zψ̂s
1 +

√
z(2λ + d1 + r2 − 2ν2)ψ̂2 + 2d1(λ − ν1)ψ̂1 = 0 (140)

zψ̂s
2 +

√
z(2λ + d2 + r1 − 2ν1 + 2ε)ψ̂s

1 + 2d2(λ − ν2)ψ̂2 = 0. (141)

In exactly the same way as for the PIV equation, this system of difference equations (in the
spectral parameter) can be cast into a more standard form by introducing the formal Fourier
transform of the eigenfunctions ψj(λ, x):

�̃j (k, x) :=
∫

dλ ei kλψ̂j (λ, x). (142)

In terms of the new variable ξ = exp(−iεk) and the new dependent variables �j(ξ, z) :=
�̃j (k, x), we then obtain the linear systems

εξ∂ξ

(
�1

�2

)
= 1

2

[
D1 + A +

1

ξ − z
B

] (
�1

�2

)
(143)

εz∂z

(
�1

�2

)
= 1

2

[
D2 + A − 1

ξ − z
B

] (
�1

�2

)
(144)
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where

A =
(

ν2 − ν1
√

z

ξ
√

z ν1 − ν2

)
B =

(
ξr1 −d2r2/

√
z

−ξd1r1/
√

z ξr2

)
(145)

D1 = −(ν1 + ν2)

(
1 0
0 1

)
(146)

D2 =
[

1

2
(d1 + d2) + ν1 + ν2

] (
1 0
0 1

)
+

[
1

2
ε + r1 − r2

] (
1 0
0 −1

)
.

The compatibility of these two matrix equations yields the equations (117)–(120).
Although our result is also expressed in terms of 2 × 2 matrices this Lax pair is quite

different from the classical one given in [8], which is commonly used when discussing
isomonodromy problems in connection with PIII. It also seems to be unrelated to linear
systems that would result from a similarity reduction of the linear triads for the Loewner–
Konopelchenko–Rogers system, a system that incorporates the Einstein–Weyl equations that
possess a similarity reduction to the (full parameter) PIII equation [35].

8. Conclusions

In this paper we have constructed Darboux chains from (scalar) Schrödinger equations for
generic second-order energy-dependent potentials and then proceeded to discuss periodic
reductions of such chains. The Darboux chains were classified into three types, the so-called
PIV−V, PIII and PVI branches, which derive their names from the Painlevé equations that arise
as the lowest period (non-trivial) reductions contained in each of them. (A detailed discussion
of the PVI branch will be given in a sequel to the present paper.)

We described in detail the construction of the generic chain equations (29) and (92), (93)
for the PIV–V and PIII branches, and their bilinearization (34), (110). For the periodically
closed chains we described the reduction to the corresponding Painlevé equations, with an
intermediate equation in Hamiltonian form (see also [4]).

The bilinearization of the generic Darboux chains in the PIV–V and PIII branches led to a
representation of the eigenfunctions in terms of tau-functions (33), (104), which in reduction
gave rise to bilinear representations and tau-function formulae for the PIII−V equations (53),
(73), (129)–(132) and their solutions (55), (75), (133). From the bilinear form of the PIV–V

branch it is clear that the equations described by it are identical to the so-called A(1)
n -type

dynamical systems introduced by Noumi and Yamada [14]. The exact nature of the tau-
functions associated with the periodic reductions of this branch in the context of Sato theory
will be discussed in a forthcoming paper (see [34] for a discussion of the PIV case). The
precise link between the tau-functions that appear in the periodic reductions of the PIII branch
and Sato theory is currently being investigated.

The construction of the Darboux chains presented in this paper also allowed us to
systematically derive Lax representations for the chain equations and their reductions, resulting
in a novel Lax description of the PIII equation (143)–(146). The Lax pairs obtained for the
PIV–V branch were again related to those obtained by Noumi and Yamada for the A(1)

n -type
dynamical systems mentioned before.

The interpretation of the Hamiltonians associated with the periodic reductions of the
Darboux chains, in terms of the tau-functions that describe their solutions, as well as a detailed
investigation of the higher order members—i.e., those corresponding to chains with higher
periods—in the different branches of chain equations, are topics that will be addressed in
subsequent papers.
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Finally we should comment on the two Painlevé equations that have not been discussed
in this paper: the PII and PI equations. As we only treated the Darboux transformations for
a general (energy-dependent) Schrödinger equation, we had to omit the PII equation from our
analysis. In principle, one should be able to obtain it by closing a Darboux chain at step two
but for a second-order spectral problem the result would be trivial and one has to resort to
something else. Indeed, in [3] the PII equation arises from a chain of Darboux transformations
for a third-order spectral problem (although admittedly a special one that still allows for
Darboux transformations similar to those for the Schrödinger equation). For the PI equation
the situation is again different. The fact that certain Painlevé equations arise from periodic
Darboux chains is intimately related to the existence of an affine Weyl group of symmetries
for these equations. The PI equation does not posses such symmetries and hence does not
arise from a periodic Darboux chain (it is actually related to stationary reductions of integrable
systems [6]).
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Math. J. 153 53–86
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[32] Bureau F J 1980 Sur un système d’équations différentielles non linéaires Bull. Acad. R. Belg. 66 280–4
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